Software Engineering Conference Russia October 2017, St. Petersburg

Enterprise class SQL Server monitoring in distributed production environments with high number of servers

Roman Dimenko

About myself

- DBA and DBD since early 2000's
- Managed distributed DB teams up to 20 people
- Worked with DELL EMC, Microsoft, Spar, McDonald`s
- High load OLTP databases, DWH
- Industries: telecom, fintech, adtech, retail, cloud

Database monitoring in general

- Database monitoring in general
- Proactive and reactive

- Database monitoring in general
- Proactive and reactive
- Cost

- Database monitoring in general
- Proactive and reactive
- Cost
- Skills

- Database monitoring in general
- Proactive and reactive
- Cost
- Skills
- Scalability

- Database monitoring in general
- Proactive and reactive
- Cost
- Skills
- Scalability
- Levels of monitoring (from hardware to business logic)

- Database monitoring in general
- Proactive and reactive
- Cost
- Skills
- Scalability
- Levels of monitoring (from hardware to business logic)
- Service models (managed service) and service providers and what they use

Comparison of existing solutions

- Monitoring
- Tuning
- SQL Server
- Windows
- Network
- Reporting
- Alerting
- Advice

Historical monitoring data

- Historical monitoring data
- Close to real-time

- Historical monitoring data
- Close to real-time
- Alerts via email

- Historical monitoring data
- Close to real-time
- Alerts via email
- Customizable thresholds

- Historical monitoring data
- Close to real-time
- Alerts via email
- Customizable thresholds
- Advanced SQL Server features monitoring

CPU load

Processor Utilization Trend

Processor Utilization Trend

Memory consumption

Windows monitoring

- Windows monitoring
- Other RDBMS (PostgreSQL, MySQL, Oracle)

- Windows monitoring
- Other RDBMS (PostgreSQL, MySQL, Oracle)
- Linux

- Windows monitoring
- Other RDBMS (PostgreSQL, MySQL, Oracle)
- Linux
- AI, Data mining

Architecture

- More than 100 counters
- Machine Metrics
- SQL Server metrics
- Database metrics
- High Availability metrics (AO, Logshipping, Mirroring)
- BI metrics (SSRS, SSAS)

- More than 100 counters
- Trend analysis and prediction

- More than 100 counters
- Trend analysis and prediction
- Ability to drill down from high level problem to root cause

Автоматический мониторинг загрузки процессора на сервере

Server Name	SQL Query	Database Name	Program Name	dd bh mm ss mae	Session ID	Login Name	Wait Info
SQLCLUSTERZ	query –<br sp_sarver_diagnostics -?>	master	Microsoft® Windows® Operating System	60 00:12:27 426	52	NT AUTHORITY/SYSTEM	(263ms) SP_SERVER_DIAGNOSTICS_SLEEP
SQLCLUSTER2	query — select p</td <td></td> <td>SQLAgeed - TSQL JabStep (Job bx24DEEF4FFC29D4418 E932823300438C3 - Step 1)</td> <td>00 00:02:05 300</td> <td>87</td> <td>enver</td> <td>(28ms)PAGEKOLATCH_SH:Inventory:1</td>		SQLAgeed - TSQL JabStep (Job bx24DEEF4FFC29D4418 E932823300438C3 - Step 1)	00 00:02:05 300	87	enver	(28ms)PAGEKOLATCH_SH:Inventory:1
SQLCLUSTER2		master	Microsoft SQL Server	00 00 02 01 550	77	LinkedSener	
SQLCLUSTER2		master	Microsoft SQL Server	00 00:01:56:993	76	LinkedSener	
SQLCLUSTER2	query —<br begin tran —?>	Services	SQLCLUSTI MS_Tables_2	00 00:00:04:826	70	erver	
SQLCLUSTER2	query –<br begin tran	Services	SQLCLUSTE	00 00 00 04 313	71	erver	

- More than 100 counters
- Trend analysis and prediction
- Ability to drill down from high level problem to root cause
- Meet growing business needs

Operations throughput

- Operations throughput
- Decision making

- Operations throughput
- Decision making
- Cost of failure

- Operations throughput
- Decision making
- Cost of failure
- Capacity planning (volume, type of hardware)

- Operations throughput
- Decision making
- Cost of failure
- Capacity planning (volume, type of hardware)
- DB monitoring is usually undervalued

- Operations throughput
- Decision making
- Cost of failure
- Capacity planning (volume, type of hardware)
- DB monitoring is usually undervalued
- Examples: DELL EMC, VIVA, Spar, Stock market Brokers

Real life cases

- Examples: DELL EMC, VIVA, Spar, Stock market Brokers
- DELL EMC From Nagios and basic alerts to comprehensive DB monitoring
- VIVA From basic alerts
- Spar From no monitoring
- Stock market brokers From SCOM
- WallMart from no monitoring

Nagios case detailed (DELL EMC)

- Before
- Only basic monitoring
- After
- Comprehensive monitoring

Open Source agents

- Open Source agents
- Low to no impact on performance

- Open Source agents
- Low to no impact on performance
- Secure

- Open Source agents
- Low to no impact on performance
- Secure
- Scalable

- Open Source agents
- Low to no impact on performance
- Secure
- Scalable
- Free

- Open Source agents
- Low to no impact on performance
- Secure
- Scalable
- Free
- Customizable

- Open Source agents
- Low to no impact on performance
- Secure
- Scalable
- Free
- Customizable
- Authors

Questions

Contacts

- www.dimenko.com
- roman.dimenko@gmail.com
- LinkedIn: https://ru.linkedin.com/in/romandimenko

Early adopters are welcome

Thank you!