
10th Central and Eastern European Software Engineering
Conference in Russia - CEE-SECR 2013

October 23 - 25, Moscow

Alexander Kirsanov SPbSU, JetBrains lab

Reactive Robotics Programming with
F# and Mono

Reactive robotics

 Robots are indeed a reactive systems
 Resilient
 Special requirements for correctness

 Scalable
 A lot of peripheral devices
 Integration with servers and clouds

 Responsive

Evolution of controllers

 Ability to use higher-level development tools
 New platforms
 Reusing of popular technologies

 Rise of personal robotics
 Next step after smartphones and the internet
 A lot of enthusiasts

Development for embedded systems

 Different architectures
 Host and target machines
 Cross-compilers

 Controller specific Libraries
 Slightly extensible

 Poor toolset

Reusing of popular technologies

 Development unification
 Using all tools and profits from the industry
 Involving of SE professional in field of robotics

F# language

 Type inference
 Functional first
 First class event
 Asynchronous computations
 Fully compatible with CLR
 Well supported by many .NET tools

.NET/Mono

 Cross-platform
 Rapidly evolving
 Xamarin
 New performance team
 Optimization for ARM and mono itself
 Using the same versions of mono

Enough even for robotics

 A lot of tools and libraries
 SDK for clouds and NUI
 Applications in field of robotics

Kinect example

Reactive Extensions

 Implemented for 8+ languages
 Ease the using of threads
 Well documented

Development notes

 All devices can be divided
 Sensors
 Actuators

Library overview

 All sensors can emit events
 All other devices can handle them
 User can manipulate robot in different levels
 From i2c module
 To Model

Library overview

 Different kind of sensors
 Gyroscope, Accelerometer
 Sensors of lines and objects
 IR and other analog sensors

 Motors, led bulbs, lightning stripes

Example

Results

 Linux TRIK
 Mono
 All available devices are supported
 Not just F#-faced library. C# friendly API

Limitations

 JIT-compilation has impact on startup time
 AOT
 Library is written without third-party assemblies
 GC and using structs

What do we get?

 The ability to program robots freely
 No fear of low-level gpio manipulation
 No Linux-only C and ARM assembler development

 Standard programmer toolset
 No cross-compilers

 High-level declarative robots programming

Educational Robotics

 Well awarded in STEM (Science, Technology, Engineering,
and Mathematics)

 The same Influence as becoming mandatory computer
classes in schools 30 years ago

Modern Software Engineering

 Difficult
 Need to know a lot beyond the language itself
 Many difficult subjects
 Foreign abstractions
 All knowledge needs good practise

Learn SE via robotics

 A lot of interesting and challenging tasks
 Interactive environment
 Very interactive
 Physically

 Debugging with your own hands and eyes
 Using the same technologies as you need for job

Results in educational scope

 AYcamp
 All examples are written by first and second year students
 Happiness of high-level declarative robotics

Thanks!

 Questions?

	Reactive Robotics Programming with F# and Mono
	Reactive robotics
	Evolution of controllers
	Development for embedded systems
	Reusing of popular technologies
	F# language
	.NET/Mono
	Enough even for robotics
	Kinect example
	Reactive Extensions
	Development notes
	Library overview
	Library overview
	Example
	Results
	Limitations
	What do we get?
	Educational Robotics	
	Modern Software Engineering
	Learn SE via robotics
	Results in educational scope
	Thanks!

