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Reactive robotics 

 Robots are indeed a reactive systems 
 Resilient 
 Special requirements for correctness 

 Scalable 
 A lot of peripheral devices 
 Integration with servers and clouds  

 Responsive 



Evolution of controllers 

 Ability to use higher-level development tools 
 New platforms 
 Reusing of popular technologies 

 Rise of personal robotics 
 Next step after smartphones and the internet 
 A lot of enthusiasts  



Development for embedded systems  

 Different architectures  
 Host and target machines 
 Cross-compilers 

 Controller specific Libraries 
 Slightly extensible 

 Poor toolset 
 



Reusing of popular technologies 

 Development unification 
 Using all tools and profits from the industry 
 Involving of SE professional in field of robotics 



F# language 

 Type inference 
 Functional first 
 First class event 
 Asynchronous computations 
 Fully compatible with CLR  
 Well supported by many .NET tools 



.NET/Mono 

 Cross-platform 
 Rapidly evolving 
 Xamarin 
 New performance team 
 Optimization for ARM and mono itself 
 Using the same versions of mono 



Enough even for robotics 

 A lot of tools and libraries 
 SDK for clouds and NUI 
 Applications in field of robotics 

 



Kinect example 



Reactive Extensions 

 Implemented for 8+ languages 
 Ease the using of threads 
 Well documented 



Development notes 

 All devices can be divided   
 Sensors 
 Actuators 



Library overview 

 All sensors can emit events 
 All other devices can handle them 
 User can manipulate robot in different levels 
 From i2c module 
 To Model 



Library overview 

 Different kind of sensors 
 Gyroscope, Accelerometer 
 Sensors of lines and objects 
 IR and other analog sensors 

 Motors, led bulbs, lightning stripes 
 

 



Example 



Results 

 Linux TRIK 
 Mono 
 All available devices are supported 
 Not just F#-faced library. C# friendly API 

 
 



Limitations 

 JIT-compilation has impact on startup time 
 AOT 
 Library is written without third-party assemblies 
 GC and using structs 



What do we get? 

 The ability to program robots freely 
 No fear of low-level gpio manipulation 
 No Linux-only C and ARM assembler development 

 Standard programmer toolset 
 No cross-compilers  

 High-level declarative robots programming 
 



Educational Robotics  

 Well awarded in STEM (Science, Technology, Engineering, 
and Mathematics) 

 The same Influence as becoming mandatory computer 
classes in schools 30 years ago 

 
 



Modern Software Engineering  

 Difficult 
 Need to know a lot beyond the language itself 
 Many difficult subjects 
 Foreign abstractions 
 All knowledge needs good practise  
 



Learn SE via robotics 

 A lot of interesting and challenging tasks 
 Interactive environment 
 Very interactive 
 Physically 

 Debugging with your own hands and eyes 
 Using the same technologies as you need for job 



Results in educational scope 

 AYcamp 
 All examples are written by first and second year students 
 Happiness of high-level declarative robotics   



Thanks! 

 Questions? 
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