strace and Lua

Viktor Krapivenskiy

Moscow Institute of Physics and Technology

23rd of September, 2017

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 1 of 15



Previously in strace

e strace is a useful diagnostic, instructional, and debugging tool.
It intercepts and records the system calls which are called by a
process and the signals which are received by a process.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 2 of 15



Previously in strace

e strace is a useful diagnostic, instructional, and debugging tool.
It intercepts and records the system calls which are called by a
process and the signals which are received by a process.

e Within a GSoC 2016 project, strace was extended with the
tampering capability, allowing the user to inject fake syscall results.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 2 of 15



Previously in strace

e strace is a useful diagnostic, instructional, and debugging tool.
It intercepts and records the system calls which are called by a
process and the signals which are received by a process.

e Within a GSoC 2016 project, strace was extended with the
tampering capability, allowing the user to inject fake syscall results.

e Tampering could be performed on a given set of syscalls, or only on
those accessing a given set of paths; either for each syscall, only
N-th one, or N-th one and then each K-th one.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 2 of 15



Previously in strace

e strace is a useful diagnostic, instructional, and debugging tool.
It intercepts and records the system calls which are called by a
process and the signals which are received by a process.

e Within a GSoC 2016 project, strace was extended with the
tampering capability, allowing the user to inject fake syscall results.

e Tampering could be performed on a given set of syscalls, or only on
those accessing a given set of paths; either for each syscall, only
N-th one, or N-th one and then each K-th one.

e Complex filtering logic or sematics-preserving success injection is
impossible.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 2 of 15



Can we do better?

e Lua is a powerful, efficient, lightweight, embeddable scripting
language.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 3 of 15



Can we do better?

e Lua is a powerful, efficient, lightweight, embeddable scripting
language.

e LualIT is a Just-In-Time compiler for Lua that is considered to be
"one of the fastest dynamic language implementations”.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 3 of 15



Can we do better?

e Lua is a powerful, efficient, lightweight, embeddable scripting
language.

e LualIT is a Just-In-Time compiler for Lua that is considered to be
"one of the fastest dynamic language implementations”.

e LualIT comes with the FFI (foreign function interface) library that
can parse plain C declarations (almost compatible with C99)!

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 3 of 15



Can we do better?

e Lua is a powerful, efficient, lightweight, embeddable scripting
language.

e LualIT is a Just-In-Time compiler for Lua that is considered to be
"one of the fastest dynamic language implementations”.

e LualIT comes with the FFI (foreign function interface) library that
can parse plain C declarations (almost compatible with C99)!

e It can also create and manipulate boxed C objects of known types.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 3 of 15



Can we do better?

e Lua is a powerful, efficient, lightweight, embeddable scripting
language.

e LualIT is a Just-In-Time compiler for Lua that is considered to be
"one of the fastest dynamic language implementations”.

e LualIT comes with the FFI (foreign function interface) library that
can parse plain C declarations (almost compatible with C99)!

e It can also create and manipulate boxed C objects of known types.

e Functions like typeof, sizeof, alignof, offsetof, istype etc; implicit
conversion between native Lua types and boxed C values.

e No hand-holding!

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 3 of 15



ffi = require ’ffi’

ffi.cdef[[
// available as ffi.C.printf
int printf(const char *fmt, ...);

// a boxed object can be created with, e.g.,
// ffi.new(’struct my_struct’)
struct my_struct {
int a;
uint64_t b; // a number of types are pre-defined
I

// available as ffi.C.MY_CONSTANT
enum { MY_CONSTANT = 42 };

// available as ffi.C.ANOTHER_CONSTANT
const static int ANOTHER_CONSTANT = 84;
1]

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 4 of 15



The mechanism (1/3)

/* typedefs for kernel_[ullong_t are provided to FFI,
as well as definitions for some other structures */

struct tcb {

int flags; /* Not documented as a part of the

* interface, but used by helper library */
int pid; /* Tracee’s PID */
int qual_flg; /* Just like the ::flags field */
unsigned long u_error; /* Error code */
kernel_ulong_t scno; /* Syscall number */
/* MAX_ARGS gets expanded before feeding it to FFI %/
kernel_ulong_t u_arg[MAX_ARGS]; /* Syscall args */
kernel_long_t u_rval; /* Syscall return value */

/* That’s it for FFI’s definition of struct tcb, but not
* for strace’s once! *x/

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 5 of 15



mechanism )

e strace now maintains two additional (to the tracing options sets)
sets per personality: a set of syscalls that need to be returned to Lua
on syscall entry, and those that need to be returned on syscall exit.

e Initially, both of them are empty.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 6 of 15



mechanism )

e strace now maintains two additional (to the tracing options sets)
sets per personality: a set of syscalls that need to be returned to Lua
on syscall entry, and those that need to be returned on syscall exit.

e Initially, both of them are empty.

® bool monitor(unsigned scno, unsigned pers, bool
on_entry, bool on_exit) — marks syscall with number scno on
personality pers as to be returned from next_sc;

e Exposed as strace.C.monitor.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 6 of 15



e strace now maintains two additional (to the tracing options sets)
sets per personality: a set of syscalls that need to be returned to Lua
on syscall entry, and those that need to be returned on syscall exit.

e Initially, both of them are empty.

® bool monitor(unsigned scno, unsigned pers, bool
on_entry, bool on_exit) — marks syscall with number scno on
personality pers as to be returned from next_sc;

e Exposed as strace.C.monitor.

e void monitor_all(bool on_entry, bool on_exit) — marks all
syscalls as to be returned from next_sc;

e Exposed as strace.C.monitor_all.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 6 of 15



strace now maintains two additional (to the tracing options sets)
sets per personality: a set of syscalls that need to be returned to Lua
on syscall entry, and those that need to be returned on syscall exit.

Initially, both of them are empty.

bool monitor(unsigned scno, unsigned pers, bool
on_entry, bool on_exit) — marks syscall with number scno on
personality pers as to be returned from next_sc;

e Exposed as strace.C.monitor.
void monitor_all(bool on_entry, bool on_exit) — marks all
syscalls as to be returned from next_sc;

e Exposed as strace.C.monitor_all.
struct tcb * next_sc(void) — returns either a pointer to the

trace control block of the next syscall event being monitored, or a
null pointer if strace needs to be terminated.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 6 of 15



strace now maintains two additional (to the tracing options sets)
sets per personality: a set of syscalls that need to be returned to Lua
on syscall entry, and those that need to be returned on syscall exit.

Initially, both of them are empty.

bool monitor(unsigned scno, unsigned pers, bool
on_entry, bool on_exit) — marks syscall with number scno on
personality pers as to be returned from next_sc;

e Exposed as strace.C.monitor.

void monitor_all(bool on_entry, bool on_exit) — marks all
syscalls as to be returned from next_sc;

e Exposed as strace.C.monitor_all.

struct tcb * next_sc(void) — returns either a pointer to the
trace control block of the next syscall event being monitored, or a
null pointer if strace needs to be terminated.

o Not exposed directly; strace.next_sc is a (thin) wrapper that saves
the result to a library-local variable; and returns nil if it was a null
pointer.

e To protect the user from dereferencing a null pointer.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 6 of 15



The mechanism (3/3)

e More C functions (for performing injection, reading and writing
memory, using strace's path-matching facilities) are exposed through
the strace.C namespace.

e C constants (sets of syscall info entries, signals, errors and ioctl
entries per personality) are also exposed through the strace.C
namespace.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 7 of 15



The mechanism (3/3)

e More C functions (for performing injection, reading and writing
memory, using strace's path-matching facilities) are exposed through
the strace.C namespace.

e C constants (sets of syscall info entries, signals, errors and ioctl
entries per personality) are also exposed through the strace.C
namespace.

e The helper library written in Lua provides convenience wrappers
around the low-level C interface, as well as a push-style hooking API.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 7 of 15



he helper library

Note: all the functions work on the current syscall event.

e strace.entering(), strace.exiting() — is this a syscall entry,
or an exit?

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 8 of 15



The helper library

Note: all the functions work on the current syscall event.

e strace.entering(), strace.exiting() — is this a syscall entry,
or an exit?

e strace.trace([flag]), strace.abbrev([flag]),
strace.verbose([flag]), strace.raw([flag]) — filtering and
altering trace options (flag defaults to true).

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 8 of 15



The helper library

Note: all the functions work on the current syscall event.

e strace.entering(), strace.exiting() — is this a syscall entry,
or an exit?

e strace.trace([flag]), strace.abbrev([flag]),
strace.verbose([flag]), strace.raw([flag]) — filtering and
altering trace options (flag defaults to true).

e Get syscall/signal /error/ioctl request number by its name, or vice
versa.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 8 of 15



The helper library

Note: all the functions work on the current syscall event.

e strace.entering(), strace.exiting() — is this a syscall entry,
or an exit?

e strace.trace([flag]), strace.abbrev([flag]),
strace.verbose([flag]), strace.raw([flag]) — filtering and
altering trace options (flag defaults to true).

e Get syscall/signal /error/ioctl request number by its name, or vice
versa.

e strace.inject_signal(sig), strace.inject_error(err) —
inject a signal or an error by its name or number.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 8 of 15



The helper library

Note: all the functions work on the current syscall event.

e strace.entering(), strace.exiting() — is this a syscall entry,
or an exit?

e strace.trace([flag]), strace.abbrev([flag]),
strace.verbose([flag]), strace.raw([flag]) — filtering and
altering trace options (flag defaults to true).

e Get syscall/signal /error/ioctl request number by its name, or vice
versa.

e strace.inject_signal(sig), strace.inject_error(err) —
inject a signal or an error by its name or number.

e strace.read.-obj(addr, ct[, nlelem]),
strace.write_obj(addr, obj) — read or write a FF| object
from/to the tracee’s memory at the given address (ct [, nelem]
define a C type to read).

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 8 of 15



The helper library

Note: all the functions work on the current syscall event.

e strace.entering(), strace.exiting() — is this a syscall entry,
or an exit?

e strace.trace([flag]), strace.abbrev([flag]),
strace.verbose([flag]), strace.raw([flag]) — filtering and
altering trace options (flag defaults to true).

e Get syscall/signal /error/ioctl request number by its name, or vice
versa.

e strace.inject_signal(sig), strace.inject_error(err) —
inject a signal or an error by its name or number.

e strace.read.-obj(addr, ct[, nlelem]),
strace.write_obj(addr, obj) — read or write a FF| object
from/to the tracee’s memory at the given address (ct [, nelem]
define a C type to read).

e strace.read_str(addr[, maxsz[, bufsz]]),
strace.read path(addr) — read a C string or a path C string.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 8 of 15



The helper library

Note: all the functions work on the current syscall event.

e strace.entering(), strace.exiting() — is this a syscall entry,
or an exit?

e strace.trace([flag]), strace.abbrev([flag]),
strace.verbose([flag]), strace.raw([flag]) — filtering and
altering trace options (flag defaults to true).

e Get syscall/signal /error/ioctl request number by its name, or vice
versa.

e strace.inject_signal(sig), strace.inject_error(err) —
inject a signal or an error by its name or number.

e strace.read.-obj(addr, ct[, nlelem]),
strace.write_obj(addr, obj) — read or write a FF| object
from/to the tracee’s memory at the given address (ct [, nelem]
define a C type to read).

e strace.read_str(addr[, maxsz[, bufsz]]),
strace.read path(addr) — read a C string or a path C string.

e Hooks.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 8 of 15



Note: when argument is either "entering", "exiting", or "both".

e strace.hook(scname, when, callback) — by syscall name.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 9 of 15



Note: when argument is either "entering", "exiting", or "both".
e strace.hook(scname, when, callback) — by syscall name.

e strace.hook class(clsname, when, callback) — by syscall
class.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 9 of 15



Note: when argument is either "entering", "exiting", or "both".
e strace.hook(scname, when, callback) — by syscall name.

e strace.hook class(clsname, when, callback) — by syscall
class.

e strace.hook_scno(scno, pers, when, callback) — by syscall
number and personality number.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 9 of 15



Note: when argument is either "entering", "exiting", or "both".
e strace.hook(scname, when, callback) — by syscall name.

e strace.hook class(clsname, when, callback) — by syscall
class.

e strace.hook_scno(scno, pers, when, callback) — by syscall
number and personality number.

e strace.at_exit(callback) — at exit.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 9 of 15



Example: counting number of processes spawned

n=20
assert(strace.hook({’clone’, ’fork’, ’vfork’}, ’exiting’,
function(tcp)

if tcp.u_rval "= -1 then

n=n+1

end
end))
strace.at_exit(function() print(’Processes spawned:’, n) end)

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 10 of 15



Example: using external preprocessor (1/2)

ffi = require ’ffi’
f = assert(io.popen([[cpp - <<EOF | grep -v ’~#’

#define _GNU_SOURCE
#include <fcntl.h>
enum { f_setpipe_sz = F_SETPIPE_SZ };

EOF11, ’r’))
ffi.cdef(f:read(’*a’))
f:close()

assert(strace.hook({’fcntl’, ’fcntl64’}, ’entering’,
function(tcp)
if tcp.u_arg[l] == ffi.C.f_setpipe_sz then
assert(strace.inject_error (’EPERM’))
end
end))

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 11 of 15



Example: using external preprocessor (2/2)

ffi = require ’ffi’
f = assert(io.popen([[cpp - <<EOF | grep -v ’~#’
#include <sys/utsname.h>

EOF]], ’r’))
ffi.cdef(f:read(’*a’))
f:close()
assert(strace.hook(’uname’, ’exiting’, function(tcp)

if tcp.u_rval == -1 then

return
end
local u = assert(strace.read_obj(tcp.u_arg[0], ’struct utsname’))

local s = ’Windows’
assert (ffi.sizeof (u.sysname) >= #s + 1)
ffi.copy(u.sysname, s)

assert(strace.write_obj(tcp.u_arg[0], u))
end))

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 12 of 15



Example: using external preprocessor

$ uname

Linux

$ strace -1 pretend-win.lua -e none uname
Windows

+++ exited with 0 +++

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 13 of 15



Example: using ffiex library

ffiex = require ’ffiex’
ffiex.cdef (*#include <sys/wait.h>’)

function is_truthy(x) return x and x "= 0 end
stats = {}
assert(strace.hook({’waitpid’, ’wait4’, ’osf_wait4’}, ’exiting’,
function(tcp)
if tcp.u_rval == -1 or tcp.u_rval == 0 or tcp.u_arg[1l] == O then
return
end

local status = tonumber(assert(strace.read_obj(tcp.u_argl[1],
’int’)))

if is_truthy(ffiex.defs.WIFEXITED(status)) then
local c¢ = ffiex.defs.WEXITSTATUS(status)
stats[c] = (stats[c] or 0) + 1

end

end))
strace.at_exit(function()
print (’Exit codes:’)

for k, v in pairs(stats) do print(k .. ’:’, v) end
end)

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 14 of 15



Project status

Not merged yet.

Viktor Krapivenskiy OSSDEVCONF-14, Kaluga, 2017 Page 15 of 15



